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PERTURBED BUTTERWORTH POLE PATTERNS FOR TRACKING IN
THE SENSE OF SPHERES

Chang-Doo Kee', Won-Gul Hwang" and Jong~Yeop Kim"

(Received April 9. 1990)

The so called "Quantitative Pole Placement" (QPP) identified in the context of guaranteed tracking in the sens of spheres is
considered. In the prior literature this pole-placement problem was treated in a somewhat adhoc way. The primary purpose of the
present work therefore is to propose a systematic procedure for such pole placement. The approach to the problem is based on a
generalization of the standard LQ problem formulation. The preferred pole locations that minimize a crucial operator norm nepded
for the success of the QPP formulation are shown to be a perturbed version of the Butterworth pole configuration. The results are
applied to a 3 d.o.f. robotic manipulator for illustrating the evolving methodology. At the center of the overall design philosophy
is the need to directly satisfy performance specifications in uncertain. nonlinear systems.

Key Words: Quantitative Pole Placement, Tracking in the Sese of Spheres, Generalized LQ Formulation, Loo-norm,
Banach Contraction Mapping, Butterworth Pole Configuration.

1. INTRODUCTION

The purpose of this paper is to illustrate an approch for the
systematic placemet of eigenvalues for the so called
"Quantitative Pole Placement" (QPP) problem formulated
in the context of "tracking in the sense of spheres", first
introduced in Barnard and ]ayasuriya (Barnard et aI.,
1982; ]ayasuriya et aI., 1988; ]ayasuriya et al., 1984; Kee,
1987) _These formulations have been motivated by the need
for a formal mathematical synthesis procedure for the direct
satisfication of design specifications in the presence of uncer
tain plant dynamics. The work of Horowitz (Horowitz, 1963;
Horowitz, 1967; Horowitz, 1976; Horowitz, 1982) is unique
with respect to this design philosophy. Somewhat related
work with respect to stability and tracking include Leitmann
(Leitmann, 1979; Leitmann, 1982) and his co-workers, Usoro,
et al.(Usoro et aI., 1982) and the more recent work by Zames
(Zames, 1981) and ohers.

The main desig criterion central to the methodology of the
controller for tracking in the sense of spheres (Barnard, 1980 ;
Barnard et aI., 19H2 ; ]ayasuriya et aI., 1984) can be stated as
a QPP procedure for adjusting the size of a certain linear
opeator norm. In order to view this QPP in the correct
perspective we first describe the conventional pole-placement
problem by considering a linear time invariant system of the
form

i (t)= Ax(/)+ Bu(t)

where, x(t)ER",u(t)ERm, and A and B are constant
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matrices of appropriate dimensions. If (A,B) is controllable
then arbitrary eigenvalues for the closed loop system can be
achieved by applying the state feedback u(t) = /(x(t) to this
system. This idea of arbitrary placement of closed loop
eigenvalues is what is typically referred to as pole-placement.
Typically this is achieved by a trial and error procedure.

In the linear-quadratic (LQ) problem formulation once the
weighting matrices of the performance index (PI) are chosen,
the eigenvalue locations for the closed loop system can be
computed by solving the Riccati equation. Although the
eigenvalue locations depend on the weighting matrices the
LQ formulation affords a way of selecting the closed loop
eigenvalues formally. This formulation is the motivation for
the approach described in this paper for the QPP, and is based
on a generalized LQ formulation. The latter is achieved by
considering a linear system characterizing the closed loop
linear operator pivotal to the satisfaction of the design criter
ia.(Jayasuriya et aI., 1984), As a consequence of the general
ized LQ formulation Butterworth type pole configurations
appear to yield satisfactory QPP Therefore the main contri
bution of this paper is, in executing a particular controller
design the algorithms for its synthesis are initiated by select
ing the closed loop poles in a Butterworth pattern.

The paper is organized as follows. In section n the
design criteria for the tracking in the sense of spheres are
introduced to highlight the need for QPP. The generalization
of the LQ problem is considered in section m. Then in section
IV we apply the results to a 3 d.oJ robotic manipulator fol
lowed by coclusions in section V.

2, QUANTITATIVE POLE
PLACEMENT

Design criteria for the tracking in the sense of spheres
(Jayasuriya et aI., 1984) can be extended to systems modeled
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by state and output equations of the form

i(t)=Ax(t)+ B(t)+ Dw(t)+ I(x(t),r,t) (la)
y(t)=Cx(t) (Ib)

where the state x(t)ER", the control u(t)ERm, the uncer
tainty rErcRa, the time tE T=[O,oo], the external distur
bance w(t)E WCR d

, the nonlinear function I: R"XRax T
--R", and the output(t)ERb, the pair(A,Bl is completely

controllabel, and the pair(A,C) is completely observerble.
The matrices A,B,C and D are constant matrices of dimen
sion n x n,n x m,b x n,and n x d respectively.

A Luenberger type nonlinear state observer of the form

where (ro,Yo,Zo) is a completely known triple of a specified
nominal output Yo, and corresponding solutions Zo, ro, with ro
serving as a nominal command input relative to Yo. The
nonlinear map No is represented by

( " )(t)=[/o(x(t),l)]
lVOZ 10(X(t),t)

To compare the actual and nominal systems for any uncer
tain combination (w,r,z,y) satisfying Eq. (4) and a known
combination (ro,Yo,Zo) satisfying Eq. (5), the differences

where i(t)ER", u(t)ERm,tE T=[O,oo), reference input
r(t)ERm, 10: R" x T ~ R" and G,K, V, and Vz are con
stant matrices of appropriate dimensions, is employed to
implement nonlinear state feedback control.

The feedback system represented by Eq. (1) and Eq. (2)
are combined into the form

z - Zo = /[f(Nrz - NoZo) + /[fBo( r - ro) + /[fBI w
y- Yo= Co(z- Zo)

x(t)= Ai(t)+ Bu(t)+ 10(X(t),t) + GC(X(t)
-x(t»+ V,r(t)

u(t)= Vzr(t)+ Ki(t) (2)
are transformed into fixed point formulation

z=¢z
= VVo /[f(NrWO-

1 z - No WO-
I zo) + VVo /[fBo( r - ro)

+ Wo/[fB,w+ zo
y- Yo= Co VVo-'(z- zo)

(6)

where
/[f and N r are respectively a linear and an uncertain nonlinear
map from L'oo"( T) back into itself given by

Assuming that the function ~(z( t), r, t) is continuons, and
the eigenvalues of the matrix R are in the open left half
complex plane, we can write the Eq. (3) in an equivalent
operator form using Laplace transform

where

z(t)= Rz(t) +Bor(t) +B,w(t)+ ~(z,(t),r,t)
y( t) = Coz(t)

z( t) = [~«(l)]E R 2
"

[
A BK]

R= -GC A+BK+GC

[
BV; ]

Bo= BV2 + V,

BI=[~]
Co= [C 0]

~( (t) r t)=[/(x(t),r,t)]
z " lo(x(t), t)

z(t)= /[fNrz(t)+ /[fBor(t) + /[fsl(t)+q(t)
y(t)=Coz(t)

(3)

(4)

where ¢: L'oo"( T)~ L'oo"( T) is a nonlinear map, VVo is an
arbitrary nonsingular weighting matrices, and

z= Woz,
Zo= WoZo

By applying the Banach contraction mapping theorem to
Eq. (6), we obtain the following result which gives sufficient
condition on design elements G,K, V;, V;, and the design func
tion 10 that assure servo-tracking in the sense of input-output
spheres.

Remarks:
(1) The norm considered throughout the paper is the

Loo-norm unless stated otherwise and is denoted by II • II.
(2) A given output(input) (g: T~Rb}EL;:'(O,oo),is said

to belong to an output (input) sphere Q(g : go,f3) of radius /3
>0 centered at (go: T~Rb}EL;:'(O,oo) if Ilg- goll:S::/3. go is
referred to as the nominal output (input) and Q(g : go,f3) = {g
Illg-goll:S::/3}. Here T=(O,oo) is the time set.

(3) If the system output y lies in the output sphere Q(y :
Yo,/3o) for any input sphere Q( r : ro,/3I) then the system is said
to track Yo "in the sense of input-output spheres"

Theorem 1 : Let 1 and 10 be continuous, and let G and K be
assigned so that the eigenvalues of matrix R are in the open
left-hand complex plane. Let (ro.yo,Zo) be a known combina·
tion satisfying Eqs. (5) and (r,y,z,w) be any combination
satisfying Eqs. (4). Then for any input r in the specified
sphere

(/[fz)(t)= l'eRlt - Tl z(r)dr

(Nrz)(t) = ~(z(t), r,t)
q(t)= eRtz(O),

Next, by considering a corresponding dynamical system
which is completely known (i.e. free of uncertain elements) .
the nominal operator equations can be written as

Q(r: ro,/3i)={rEL:::lllr-roll:S::/3.}

and for any external disturbances w in the specified sphere

there exists a unique combined response z in the specified
/3o-neighbourhood

(5)
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(7) where (A,B) is controllable, the optimal controller which
minimizes the quadratic performance index (PI)

where Sand Ware symmetric positive weighting matrices
and u is given by

where

7J= II WoljfQoll1
Po = WoBo11
PI = II QoB111

sup
P2= yErlIQ,,[NrZo- NoZo] II

P =z z'~~ (Z· Zo 13 )11~o[NrZ-NrZ']11
3 'z*z . ,0 IWo(z-z')11

rEr

with respect to a nonsingular constant weighting matrix Qo.

j= (.oo[XTSxtuTWu]dtJo

u= --Kx

where the controller gains are computed as

K= W-IBTK1

(9)

(10)

(11)

Remarks: Inequality (7) will be referred to as the primary
design criterion for precision tracking in the sense of spheres.
Some important design features of this criterion are

( i) Design elements G,K, VI,and V2 must be chosen so
that the eigenvalues of the matrix RER2nx2n are at suitable
locations in the open left-half complex plane and that the
inequality (7) of the Theorem 1 is satisfied. The upper bound
on the operator norm IllVoljfQoIl1 depends on the design
specifications such as tracking accuracy, the extent of the
disturbances and the size of the uncertainties. Thus for
precise traking in the presence of large disturbances and
large plant uncertainties, a small value of operator norm
IllVo IjfQoIl1 is typica.lly needed which might result in high gain
feedback. It should be noted however, that the norm bound
requirement is only a sufficient condition.

( ii) A larger upper bound for the linear operator norm
IllVo IjfQoIl1 can be allowed by a proper choice of a nonlinear
design function 10. The norm values P2,P3 and 7J playa
vital role in the design procedure. P2 can be regarded as a
measure of the maximal difference of operator N r and
operator No at Zo, P3 is a measure of the severity of the
nonlinearity and the uncertainty of the system, and 7J is a
measure of the "trackability" of the system. The function 10
should be assigned so that the values of P2 and P3 will allow
a larger upper bound for the linear operator norm II Wo¢QoIII.

(iii) A Quantitiative pole-placement(QPP) is defined by
(7). That is, a proper selection of eigenvalues of the
matrix R will potentially enable one to satisfy the operator
norm condition. To achieve an optimum design the
eigenvalues must be placed so that the operator norm is as
close as possible to the threshold value,

(:10

(iv) The nominal plant defined in Eq. (5) is an essential
part of the design criteria. That is, the nominal input ro must
be determined so that (ro,Yo) satisfies the nominal equations.

3. GENEUALIZED LQ PROBLEM

with K1 = Kt> 0 as the unique solution of the algebraic
Riccati equation

(1Z)

It is important ot note here that once 5 and W in the PI (9)

are specified, K I can be determined by Eq. (lZ). Then K I in
turn determines the state feedback gains of the control law
(10) which corresponds to a definite closed loop pole
configuration for the system given by (8). The ability to
generate this somewhat definitive pole-configuration is the
spirit in which we develop the generalized LQ problem for the
QPP.

First we observe that the operator norm 7J = II WO IjfQol11
crucial to the QPP depends only on the linear structure of
the uncertain nonlinear plant (1). The linear part of the plant
is given by Eq. (8).

Recalling the fact that for 1(t)ELp [l,CD)

1IfIIp=[l°OI/(t)IPdtJ1IP for pE[l,cx»)

and that

sup
limllfllp= 11/1100= tE [0. CD )1/(t)1,
P-->oo

we modify the LQ performance measure (8) as

Jp= l°O[ Zip {(y(t)- yo(t))'Qly(t)- yo(t)W

-{p{U(trQ2U(tWJdt (13)

to reflect an analogous Loo-measure in the limit as p.... oo. In
the PI given by (13), Yo(t)ER b is the nominal output and QI,
Q2 are repectively, symmetric positive definite weighting
matrices of order b x band m x m.

Next, by standard variational arguments we obtain the
following conditions for the optimal contor! u(t) that steers
the system output in such a way as to track the nominal
output yo(t) simultaneously minimizing the PI (13) (Kwa
kernaak et aI., 1972).

We first recall the LQ results for the regulator problem to
motivate the generalized LQ problem for the QPP described
in the previous section.

For a plant given by the state equations

x(t) = Ax( t)+ Bu(t)
y(t)= Cx(t)

(8a)
(8b)

( i) i(t)=A,i(t)+ Bu(t) (state equation)
( ii) i7 = {( C,i - YorQI( C,i - YO)}P-ICQ1( C,i - Yo)

- ATv (costate equation)
(iii) {U TQ2U}P-1Q2U t B T17=0
(iv) v( Tf)=O

H(,i( Tf ),i( Tf ), u( Tf ), v( If), Tf ) = 0

(14)

(15)
(16)

(l7a)
(17b)
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where the Hamiltonian

1
H=Zp {(Cx-yo)TQ,(Cx- YoW

+ 2~ {U TQ2UjP+v T(Ax+ Bu),

andrepresents the optimality and Tf is the final time_
Equations (14) ~ (17) constitute a set of necessary condi

tions for an extremal of the generalized LQ performance
index. If p= 1 we recover the LQ results in the form of a
state feedback with gains given by the Riccatti differential
equation. In order to obtain a perturbed form of this LQ
solution or equivalently the LQ pole-patterns for the general
ized LQ problem (13) we start by defining the positive
quantities

It can be easiLy shown that

where

This implies that Cx ->Yo which in a sense captures the
continuous tracking requirement. This somewhat heuristic
argument is the motivation for the limiting computations
given below. To facilitate these computations we arbitrarily

set~Q2'= 1 for the SISO case.
102

Now we derive the characteristic polynomial of A as a
function of 101 and 102, observing that the optimal closed loop
poles which are the eigenvalues of the matrix A should lie in

the open left half complex plane. Moreover we set ~Q2'=
102

1 for the SISO case as per the remarks made earlier.

(18)

(19)

lim{( Cx - YO)TQ,( Cx - YoW- 1= tl(t)
p_oo

lim{ aTQdi jP-l = t2(t)
p-oo

which are then substituted in (15) and (16). The costate Eq.
(15) then become a(s) = det(s! - A)

h(s)= C(s! - A)-'B

and the control a(t) from(16) is

-(t)~ ] Q-1B T -u . ~ - t2( t) 2 V

(20)

(21)

and !,s are the identity matrices of appropriate dimensions.
Thus the eigenvalues of the closed loop system are the zeros
of (26) which are in the open left half complex plane. Now we
let the open loop transfer function h(s) of a SISO system
be represented by

Substituting (21) into (14) and augmenting it with (20)
yield,

t(t)=Ax - t2~TfBQ2-1BTV (22a)

[;(t)= - tr(t)C'Q,CX - ATV + t,(t)C'Q,yO (22b)

h(s)= b(s)
a(s)

bO;(S-97')
i=1 (27)

Rewriting Eq. (22) in a matrix form, given

(23)

where bo is a nonzero constant, 97', i = 1······ r, are the zeros of
the open loop system and it" i = 1······ n, are the poles of
the open loop system, then with Q, = 1 for simplicity, (26)
becomes

where

z=[ ~JER2n

A=[ -tl~TQIC
B=[~JER2n
fic = t,C TQ,YoERm

Remarks: Equations (22) can be rewritten as

(28)

The asymptotic behavior of these closed loop poles as 101->00

is given in the following theorem (Kwarkernaak et aI., 1972).

Theorem 2 : Suppose that the open loop system is represent
ed by the transfer function (27), then for 101->00, r
eigenvalues of the closed loop system approach asymtotically
the values .p"i=I,·"r,where

and we observe that for 101 very large (or 101->(0) by setting

~=O formally in (24b) that
101

i =Ax-~B~-IBTV
102

_L V= - C TQ, Cx _~ATV + C TQ,yO
10, 101

(24a)

(24b)

-_[97' if Re(97')~O
97,- -97' if Re(97,) >0

and the remaining (n- r) eigenvalues approach the
asymptotes through the origin and make angles 8 with the
negative real axis of

fir n-r-1
(a) 8= +-- 1=0"', 2 ' for (n- r) odd- n-r'
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1
(1'+c-)71" n-r-2

(b) (j= +--"_.- 1'=0···. 2 ,for (n- r)even.- n-r '

chosen so that the distance from the origin p, and the angle (j
measured from the negative real axis shown in Fig. 2 (a)
are

The distance from the origin for the far away eigenvalues are
asymptotically (E1 D~)11(2{n-r)).

Figures 1(a) and 1(b) show two Butterworth pole con
figurations corresponding to (n - r) = 2. and 3 respectively.

In order to illustrate that the Butterworth pole configura
tion given in the above theorem leads to an almost minimum
norm for the linear operator characterizing the closed loop
system in QPP we give two examples.

we then compute the closed loop operator norm II WII corre
sponding to each pole configuration specified by p and e.
The results shown in Fig. 2(b) verify that the minimum norm
is obatined when the set of eigenvalues for the closed loop
system are chosen in the vicinity of a 45 line. This is quite
consistent with the predictions of the theorem given previous
ly.

In the following section we apply these results from Theor
ems 1 and 2 to a robotic manipulator problem merely for
the purpose of illustrating our design methodology.

Example: Consider the second order system

[ ~lJ=[ 0.23 O. J[XIJ+[OJU(t)
X2 -0.57 1.42 X2 1

(29)

p: 0.5
(j : 10.

1.0
20.

1.5
30.

2.0
40.

3.0
50.

5.0 10.0 20.0
50. 70. 80.

The set of eigenvalues for the closed loop system are 4. 3 DOF MANIPULATOR

'.
We consider the three DOF manipulator shown in Fig. 3.

This manipulator has a rotational joint and a translational
joint in the (x.y) plane. Moreover the arm can be lifted along
the vertical z-axis thus defining the third degree of freedom.

The dynamic equations for this robot configuration follow
directly from an application of Lagrange's equations and
take the following form (Freund 1982)

M( W(t). r) Ijj(t) =., - I( W(t), lfr(t), r)+ u(t) (30)

Fig. 1. Optimal pole configuration

where F r is the radial force. T. is the torque and F z is the
vertical force associated with the coordinates r.e,and z
respectively. M(W(t).r) and 1(lJr(t),lfr(t),r) are given be
lows.

o
(Ml +M2)r 2(t)- Mdr(t) +J

ol(Ml+M2)
M(W(t).r)= ~

where W(t)=[r(t).B(t),z(t)jT specifies the configuration at
time t in a cylindrical frame of reference. r is the payload
uncertainty and the dot denotes time derivatives. u(t) re
presents the generalized forces and is given by

(b) n • r - )(a) n . r - 2

Fig. 2(a) Eigenvalue placement for n-2

11·11

fJ - La

p - 5.0

p - 10.

.,0

y

\

r z

x

Force F
z

Fig. 2(b) Norm configuration for n-2 Fig. 3 A three DOF robot manipulator
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~ I (31a)
(M,+M2)

. [-MI2 r(t)()2(t)++MIR0
2
(t) ]

j( rp( t), rp(t), y) == (2M,2r(t) r( t)~MIN (I» () (t)

(31b)

where, MI and M2 are the arm mass and the payload mass,
respectively, M1 2 == M1+M2• f is the length of the arm AB.
J the net moment of inertia of the arm and the swivel joint is
given by

where, 1111 and JM3 are the moments of inertia of the swivel
and the arm respectively, about the z-axis. M3 and rz are the
mass and the radius of the swivel.

Equation (31) depict a highly coupled nonlinear set of
equations. By employing the state dependent transformation

despite the payload uncertainty. Yo;, i == 1,2,3 are the j nominal
outputs to be tracked and y; are the three actual outputs.

Input Sheres: Let the input spheres be given by

;3, == I .0, i == 1,2,3

Nominal Output:
The nominal outputs to be tracked are

YOl == 0.8-0 _8e-"(cos(t) +3sin(l))
for the radial displacement of the arm,

Y02== t2e't for the angular rotation of the arm,
Y03 == 0.5 - O. 5cos(l )for the vertical motion of the arm.

Output Spheres:
Output sphere specifications are

Thus the tracking specifications call for precise tracking of
the nominal outputs given above upto an accuracy of 0 .1m in
Yl, O.lrad in Yz and O.lm in Y3

on the input u(l), the equations of motion (30) are transfor
med into

u( t) == M( rp( t), y)u,(t)

¢(t) == _. M( rp(t), y)j( rp,(I), cp(l),y) + u,(I)

(32)

(33)

Bounded Uncertainty:
We consider the payload M2 to be the primary uncertainty

and assume that

The inertia matrix M(rp(t),y) is clearly invertible for all tE
[0,=) which follows from the positive definitness of the mass
matrix of a manipulator.

Now Eq. (33) can be rewritten in the usual state space form
yielding.

where, 13 and 0 are 3 x 3 identity and null matrices re
spectively,

( ) _ [rp(l) ] 6
X t - cp(l) ER,

u,( t) == M- 1
( rp(t), y)u(t)E R 3

,

and nonlinear term

Equation (34) are decoupled with respect to the linear
parts and is made use of in executing the design procedure
obtained previously in section n. This form clearly allows
the arbitrary placement of eigenvalues of each decoupled
subsystem.

Design Objective:
Our basic design objective is to synthesize a control u(l) in

order to achieve the tracking performance specified by the
output constraints

In order to deign a controller as outlined in the previous
section, a threshold value as specified in Eq. (7) needs to be
computed first. This requires the computation of several
norm quantities as described in the theorem. We use the
following data for all computations. M 1 == 40kg, M2 == [0,20]
kg, M 3 ==100kg, f==lm, r(t)== [0.0, 1.0]m, z(t)==[O.O,
1. 0] m, O(t) == [O,iT]rad, and r2 == 0.1m.

Let the design matrices V'I == 03 and V2 == 13 , then
BO==[03 13 03 13F

The weighting matrices Wt, and Qo chosen primarily to yield
favorable norm values are

Wt,== Qo==[~ 06]
06 ~

where ~ ==l ~: ~3 13J and I,tlm.x is the maximum
!/t!max

absolute value of the eigenvalues of matrix R. 13 is the 3 x 3
Identity matrix, 03 and 06 respectively are 3 x 3 and 6 x 6
mull matrices.

The selection of the weighting matrices is relatively arbi
trary. For example they may be set to the identity matrix.
This however will not yield favorable norm values.

Then,

Po == II QoBo11

== II[~ ~][03 13 03 13FII
1 . 1 12

== I,tlm.x' 1 == ,"',

and Pl== II QoB111 ==0, since B1==0 due to no external distur
bance.
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I
that lAi1max < 1. At the end of the design this condition

needs to be verified. It will clearly be statisfied in this case.
Now assembling all of the above computations we compute

threshold given in Eq. (7)

sup
To calculate P2== yErIIQo(NrZo- NoZo)II, we need to select

a nominal nonlinear function g(x) to cancel as much as
possible the uncertain effects of f~. we choose g(x) to be
of the same form as fN(X,y) with y replaced by Yo, where yo
are the arithmetic means of the uncertain parameters. In this
case y=Mz=[O,20)kg thus yielding /30

p-;13~-~r;:/3w + p-;- p:;ffo
- _ CLJ . . _
-- 1/1,tlmax +6. olf,Umax + (21.0) (O.Il

(35)

where M2,!}f.2 and 111'2 respectively are the mean value, lower
bound and the upper bound of M2•

Thus,

On substitution of numerical values, it follows that

6
P2=~

IAilmax

Computation of P3 involves the calculation of gradients of
the nonlinearity with respect to he state vector x,and is given
by

P3 =maxi GI, Gz}

where,

GI=maxllV',fNI11
= max{Uifm.)xsl,12(XI - t11:2)1 . Ixsl}

=1.34
Gz=maxllV',fN211

=max{1
- 2(J - M1lx l + M,zxDMI2+ (2M,2XI +MIl)( - Mil +2M,Z)XI I'

(J - M1lx, +MI2)X?)Z .

1 I II -2M'2x,-M11 I I I
l,l;lm8x x,Xs, J - M1lx l + MI2X? • Xs,

I

-2MI2x,-MII 1 I I}- 2 • x,J- M,lx, + MI2XI
=21.0

Hence, we obtaine P3 = 21. 0
In computing p" and P3 as avove it is implicitly assumed

Now it only remains to fine a set of eigenvalues for the
system matrix

[
A BK ]

R= -GC A+BK+CC

so that the norm II Wo I[fQ,. lilis less than the upper bound (35).
Based on the numerical scheme previously outlined, we
obtain the spectra

6(A +BK) = {-47. 0±j49 .0, - 50. 0±j53 .0,
- 53. 0±j51.O}

6(A + GC) = {-110. O±jl11 0, -113. 0±j1l4 .0,
115.0±j1l3.ol

yielding

K=[ -416~ -530~ ~ --96 -10~ ~~J
o 0 -5410 0 0 -106

and

[

-220 0 0 -24421 0 OJ T

G= 0 -226 0 0 --25765 0
o 0 -230 0 0 -25994

With the abvoe spectra, we obtain the upper bound

--;c;--:--_k -= 0 045
Po/3.. + PI/3w + pz + P3/30 .

and the critical norm of the operator

which clearly satifies inequality (7).
With K known we can now compute the nominal command

input functions rOi(t),i=I,2,3, as follows.

rOI(t) = 3688 - e-3'(3680 cosU)+- 10336sin(t»
roz(t) = e-'(2+ 196t +5210t 2

)

r03( t) = 2705 - 2704. 5cos( t) +53sin( t).

Thus it follows that the design specified by matrices G,K,the
nonlinear function g(x) and the nominal inputs rOi,i= 1,2,3,
guarantee the required tracking performance according to
the Theorem 1. The validity of the theorem is also con
firmed by simulation results.

Figures (4) - (7) show simulations for M2 = 20kg. Figure 4
shows the nominal output YOI and the actual output YI' There
is. hardly any difference in the two graphs. This clearly
demonstrates the tracking accuracy. Figure 5(a), (b) and
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(c) show the errors e,=y,-Yo"i=l,2,3. These errors are of
the order of 10-3 which is quite conservative in comparison
with the imposed output sphere ;30 = 0.1. This conservative
ness is not surprising due to the generality of the inputs and
the nonlinearity admissible in L~[O,oo). The required control
inputs are shown in Fig. 6(a), (b), and Fig. 6(c). Figures (8)
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Fig. 7 Input disturbance (rl(t)-ro,(t)

- (10) show simulations for a sinusoidally varying uncer
tainty M2 =10-t-l0sin(l0f). Figure 8 shows the nominal
output Y02 and the actual output Y2. Figure 9 shows the error
YZ- Yo2 and the control input Uz is shown in Figure 10. The
latter uncertainty is considered just for the sake of demon·
strating that the methodology is valid for any uncertainty in
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tion results clearly demonstrate that the required tracking
accuracy is met quite adequately. In fact the design is some
what conservative. This however is to be expected since any
uncertainty whatsoever within the specified bounds is admis
sible. In particular, any Loo-function within the given bounds
is admissible.

Current research is aimed at obtaining less conservative
design criteria by employing Lz-measures for specifying
tracking bounds coupled with time varying weighting
matrices. Another open problem is to develop a formal theor
em to obtain the optimal pole-configuration yielding the
minimum closed loop operator norm in an Loo-setting. The
results given in here is a step in this direction.
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In this paper we considered the quantitative pole placement
problem central to the direct design of control systems assur
ing "tracking in the sense of spheres". An approach was
proposed to eliminate the adhoc nature of selecting the closed
loop poles. It is based on a generalized LQ(linear quadratic)
problem formulation. We argue that closed loop pole-patterns
that are very close to the Butterworth patterns yield reasona·
ble operator norms for the successful execution of the design
criteria stipulated in theorem 1. This is reasonable since in a
proper LQ formulation exact Butterworth configurations
would yield the optimal Lz-tracking when cheap control (i.e.,
the weighting on the control tends to zero) is employed.

The basic results were then applied to robotic manipulator
for illustrative purposes only. Admittedly there are practical
problems which we did not consider in this work. The simula-
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