# PERTURBED BUTTERWORTH POLE PATTERNS FOR TRACKING IN THE SENSE OF SPHERES 

Chang-Doo Kee*, Won-Gul Hwang** and Jong-Yeop Kim**<br>(Received April 9, 1990)


#### Abstract

The so called "Quantitative Pole Placement" (QPP) identified in the context of guaranteed tracking in the sens of spheres is considered. In the prior literature this pole-placement problem was treated in a somewhat adhoc way. The primary purpose of the present work therefore is to propose a systematic procedure for such pole placement. The approach to the problem is based on a generalization of the standard $L Q$ problem formulation. The preferred pole locations that minimize a crucial operator norm needed for the success of the QPP formulation are shown to be a perturbed version of the Butterworth pole configuration. The results are applied to a 3 d.o.f. robotic manipulator for illustrating the evolving methodology. At the center of the overall design philosophy is the need to directly satisfy performance specifications in uncertain, nonlinear systems.


Key Words: Quantitative Pole Placement, Tracking in the Sese of Spheres, Generalized LQ Formulation, $L_{\infty}$-norm, Banach Contraction Mapping, Butterworth Pole Configuration.

## 1. INTRODUCTION

The purpose of this paper is to illustrate an approch for the systematic placemet of eigenvalues for the so called "Quantitative Pole Placement" (QPP) problem formulated in the context of "tracking in the sense of spheres", first introduced in Barnard and Jayasuriya (Barnard et al., 1982 ; Jayasuriya et al., 1988 ; Jayasuriya et al., 1984 ; Kee, 1987). These formulations have been motivated by the need for a formal mathematical synthesis procedure for the direct satisfication of design specifications in the presence of uncertain plant dynamics. The work of Horowitz (Horowitz, 1963 ; Horowitz, 1967 ; Horowitz, 1976 ; Horowitz, 1982) is unique with respect to this design philosophy. Somewhat related work with respect to stability and tracking include Leitmann (Leitmann, 1979 ; Leitmann, 1982) and his co-workers, Usoro, et. al. (Usoro et al., 1982) and the more recent work by Zames (Zames, 1981) and ohers.

The main desig criterion central to the methodology of the controller for tracking in the sense of spheres (Barnard, 1980 ; Barnard et al., 1982 ; Jayasuriya et al., 1984) can be stated as a QPP procedure for adjusting the size of a certain linear opeator norm. In order to view this QPP in the correct perspective we first describe the conventional pole-placement problem by consiclering a linear time invariant system of the form

$$
\dot{x}(t)=A x(t)+B u(t)
$$

where, $x(t) \in R^{n}, u(t) \in R^{m}$, and $A$ and $B$ are constant

[^0]matrices of appropriate dimensions. If ( $A, B$ ) is controllable then arbitrary eigenvalues for the closed loop system can be achieved by applying the state feedback $u(t)=K x(t)$ to this system. This idea of arbitrary placement of closed loop eigenvalues is what is typically referred to as pole-placement. Typically this is achieved by a trial and error procedure.
In the linear-quadratic (LQ) problem formulation once the weighting matrices of the performance index (PI) are chosen, the eigenvalue locations for the closed loop system can be computed by solving the Riccati equation. Although the eigenvalue locations depend on the weighting matrices the LQ formulation affords a way of selecting the closed loop eigenvalues formally. This formulation is the motivation for the approach described in this paper for the QPP, and is based on a generalized $L Q$ formulation. The latter is achieved by considering a linear system characterizing the closed loop linear operator pivotal to the satisfaction of the design criteria. (Jayasuriya et al., 1984). As a consequence of the generalized LQ formulation Butterworth type pole configurations appear to yield satisfactory QPP. Therefore the main contribution of this paper is, in executing a particular controller design the algorithms for its synthesis are initiated by selecting the closed loop poles in a Butterworth pattern.
The paper is organized as follows. In section II the design criteria for the tracking in the sense of spheres are introduced to highlight the need for QPP. The generalization of the LQ problem is considered in section III. Then in section IV we apply the results to a 3 d.o.f robotic manipulator followed by coclusions in section $V$.

## 2. QUANTITATIVE POLE PLACEMENT

Design criteria for the tracking in the sense of spheres (Jayasuriya et al., 1984) can be extended to systems modeled
by state and output equations of the form

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B(t)+D w(t)+f(x(t), \gamma, t)  \tag{1a}\\
& y(t)=C x(t) \tag{1b}
\end{align*}
$$

where the state $x(t) \in R^{n}$, the control $u(t) \in R^{m}$, the uncertainty $\gamma \in \Gamma \subset R^{a}$, the time $t \in T=[0, \infty]$, the external disturbance $w(t) \in W \subset R^{d}$, the nonlinear function $f: R^{n} \times R^{a} \times T$ $\rightarrow R^{n}$, and the output $(t) \in R^{b}$, the pair $(A, B)$ is completely controllabel, and the pair $(A, C)$ is completely observerble. The matrices $A, B, C$ and $D$ are constant matrices of dimension $n \times n, n \times m, b \times n$, and $n \times d$ respectively.

A Luenberger type nonlinear state observer of the form

$$
\begin{align*}
\dot{\hat{x}}(t) & =A \hat{x}(t)+B u(t)+f_{0}(\hat{x}(t), t)+G C(\hat{x}(t) \\
& -x(t))+V_{1} r(t) \\
u(t) & =V_{2} r(t)+K \hat{x}(t) \tag{2}
\end{align*}
$$

where $\bar{x}(t) \in R^{n}, \quad u(t) \in R^{m}, t \in T=[0, \infty), \quad$ reference input $r(t) \in R^{m}, \quad f_{0}: R^{n} \times T \rightarrow R^{n}$ and $G, K, V_{1}$ and $V_{2}$ are constant matrices of appropriate dimensions, is employed to implement nonlinear state feedback control.

The feedback system represented by Eq. (1) and Eq. (2) are combined into the form

$$
\begin{align*}
& \dot{z}(t)=R z(t)+B_{0} r(t)+B_{1} w(t)+\xi(z,(t), \gamma, t)  \tag{3}\\
& y(t)=C_{0} z(t)
\end{align*}
$$

where

$$
\begin{aligned}
& z(t)=\left[\begin{array}{l}
x(t) \\
\bar{x}(t)
\end{array}\right] \in R^{2 n} \\
& R=\left[\begin{array}{cc}
A & B K \\
-G C & A+B K+G C
\end{array}\right] \\
& B_{0}=\left[\begin{array}{c}
B V_{2} \\
B V_{2}+V_{1}
\end{array}\right] \\
& B_{1}=\left[\begin{array}{c}
D \\
0
\end{array}\right] \\
& C_{0}=\left[\begin{array}{ll}
C & 0
\end{array}\right] \\
& \xi(z(t), \gamma, t)=\left[\begin{array}{l}
f(x(t), \gamma, t) \\
f_{0}(x(t), \\
\hline
\end{array}\right]
\end{aligned}
$$

Assuming that the function $\xi(z(t), \gamma, t)$ is continuons, and the eigenvalues of the matrix $R$ are in the open left half complex plane, we can write the Eq. (3) in an equivalent operator form using Laplace transform

$$
\begin{align*}
& \dot{z}(t)=\Psi N_{r} z(t)+\Psi B_{0} r(t)+\Psi_{B 1}(t)+q(t)  \tag{4}\\
& y(t)=C_{0} z(t)
\end{align*}
$$

where
$\Psi$ and $N_{r}$ are respectively a linear and an uncertain nonlinear map from $L_{\infty}^{2 n}(T)$ back into itself given by

$$
\begin{aligned}
& \left(\Psi_{z}\right)(t)=\int_{0}^{t} e^{R(t-\tau)} z(\tau) d \tau \\
& \left(N_{\gamma} z\right)(t)=\xi(z(t), \gamma, t) \\
& q(t)=e^{R t} z(0),
\end{aligned}
$$

Next, by considering a corresponding dynamical system which is completely known (i.e. free of uncertain elements). the nominal operator equations can be written as

$$
\begin{equation*}
\dot{z}_{0}=\Psi N_{0} z_{0}(t)+\Psi B_{0} r_{0}(t)+q(t) \tag{5}
\end{equation*}
$$

$$
y_{0}=C_{0}\left(z_{0}\right)
$$

where ( $r_{0}, y_{0}, z_{0}$ ) is a completely known triple of a specified nominal output $y_{0}$, and corresponding solutions $z_{0}, r_{0}$, with $r_{0}$ serving as a nominal command input relative to $y_{0}$. The nonlinear map $N_{0}$ is represented by

$$
\left(N_{0} z\right)(t)=\left[\begin{array}{l}
f_{0}(x(t), t) \\
f_{0}(\hat{x}(t), t)
\end{array}\right]
$$

To compare the actual and nominal systems for any uncertain combination ( $w, r, z, y$ ) satisfying Eq. (4) and a known combination ( $r_{0}, y_{0}, z_{0}$ ) satisfying Eq. (5), the differences

$$
\begin{aligned}
& z-z_{0}=\Psi\left(N_{y} z-N_{0} z_{0}\right)+\Psi B_{0}\left(r-r_{0}\right)+\Psi B_{1} w \\
& y-y_{0}=C_{0}\left(z-z_{0}\right)
\end{aligned}
$$

are transformed into fixed point formulation

$$
\begin{align*}
\bar{z} & =\phi \bar{z} \\
& =W_{0} \Psi\left(N_{y} W_{0}^{-1} \bar{z}-N_{0} W_{0}^{-1} \bar{z}_{0}\right)+W_{0} \Psi B_{0}\left(r-\gamma_{0}\right) \\
& +W_{0} \Psi B_{1} w+\bar{z}_{0}  \tag{6}\\
y & -y_{0}=C_{0} W_{0}^{-1}\left(\bar{z}-\bar{z}_{0}\right)
\end{align*}
$$

where $\phi: L_{\infty}^{2 n}(T) \rightarrow L_{\infty}^{2 n}(T)$ is a nonlinear map, $W_{0}$ is an arbitrary nonsingular weighting matrices, and

$$
\begin{aligned}
& \bar{z}=W_{0} z, \\
& \bar{z}_{0}=W_{0} z_{0}
\end{aligned}
$$

By applying the Banach contraction mapping theorem to Eq. (6), we obtain the following result which gives sufficient condition on design elements $G, K, V_{1}, V_{2}$, and the design function $f_{0}$ that assure servo-tracking in the sense of input-output spheres.

## Remarks:

(1) The norm considered throughout the paper is the $L_{\infty}$-norm unless stated otherwise and is denoted by $\|\cdot\|$.
(2) A given output (input) $\left\{g: T \rightarrow R^{b}\right\} \in L_{\infty}^{b}(0, \infty)$, is said to belong to an output (input) sphere $\Omega\left(g: g_{0}, \beta\right)$ of radius $\beta$ $>0$ centered at $\left\{g_{0}: T \rightarrow R^{b}\right\} \in L_{\infty}^{b}(0, \infty)$ if $\left\|g-g_{0}\right\| \leq \beta . g_{0}$ is referred to as the nominal output (input) and $\Omega\left(g: g_{0}, \beta\right)=\{g$ $\left.\mid\left\|g-g_{0}\right\| \leq \beta\right\}$. Here $T=(0, \infty)$ is the time set.
(3) If the system output $y$ lies in the output sphere $\Omega(y$ : $\left.y_{0}, \beta_{0}\right)$ for any input sphere $\Omega\left(r: r_{0}, \beta_{1}\right)$ then the system is said to track $y_{0}$ "in the sense of input-output spheres"
Theorem 1 : Let $f$ and $f_{0}$ be continuous, and let $G$ and $K$ be assigned so that the eigenvalues of matrix $R$ are in the open left-hand complex plane. Let ( $r_{0}, y_{0}, z_{0}$ ) be a known combination satisfying Eqs. (5) and ( $r, y, z, w$ ) be any combination satisfying Eqs. (4). Then for any input $r$ in the specified sphere

$$
\Omega\left(r: r_{0}, \beta_{i}\right)=\left\{r \in L_{\infty}^{m} \mid\left\|r-r_{0}\right\| \leq \beta_{i}\right\}
$$

and for any external disturbances $w$ in the specified sphere

$$
\Omega\left(w: 0, \beta_{w}\right)=\left\{z \in L_{\infty}^{d} \mid\|w\| \leq \beta_{w}\right\}
$$

there exists a unique combined response $z$ in the specified $\beta_{0}$-neighbourhood

$$
\Omega\left(z: z_{0}, \beta_{0}\right)=\left\{z \in L_{\infty}^{2 n} \mid\left\|W_{0}\left(z-z_{0}\right)\right\| \leq \beta_{0}\right\}
$$

provided $\eta \leq \frac{\beta_{0}}{\rho_{0} \beta_{i}+\rho_{1} \beta_{w}+\rho_{2}+\rho_{3} \beta_{0}}$
where

$$
\begin{aligned}
& \eta=\left\|W_{0} \Psi Q_{0}^{-1}\right\| \\
& \rho_{0}=\left\|Q_{0} B_{0}\right\| \\
& \rho_{1}=\left\|Q_{0} B_{1}\right\| \\
& \rho_{2}=\gamma \in \Gamma\left\|Q_{c}\left[N_{r} z_{0}-N_{0} z_{0}\right]\right\| \\
& \rho_{3}=z, z^{z^{\prime} \in \Omega} \begin{array}{c}
z \in 2 \\
\gamma \in \Gamma \\
\hline
\end{array}\left(z: z_{0}, \beta_{0}\right) \frac{\left\|Q_{0}\left[N_{y} z-N_{r} z^{\prime}\right]\right\|}{\left\|W_{0}\left(z-z^{\prime}\right)\right\|}
\end{aligned}
$$

with respect to a nonsingular constant weighting matrix $Q_{0}$.
Remarks : Inequality (7) will be referred to as the primary design criterion for precision tracking in the sense of spheres. Some important design features of this criterion are
(i) Design elements $G, K, V_{1}$, and $V_{2}$ must be chosen so that the eigenvalues of the matrix $R \in R^{2 n \times 2 n}$ are at suitable locations in the open left-half complex plane and that the inequality (7) of the Theorem 1 is satisfied. The upper bound on the operator norm $\left\|W_{0} \Psi Q_{0}^{-1}\right\|$ depends on the design specifications such as tracking accuracy, the extent of the disturbances and the size of the uncertainties. Thus for precise traking in the presence of large disturbances and large plant uncertainties, a small value of operator norm $\left\|W_{0} \Psi Q_{0}^{-1}\right\|$ is typically needed which might result in high gain feedback. It should be noted however, that the norm bound requirement is only a sufficient condition.
(ii) A larger upper bound for the linear operator norm $\left\|W_{0} \Psi Q_{0}^{-1}\right\|$ can be allowed by a proper choice of a nonlinear design function $f_{0}$. The norm values $\rho_{2}, \rho_{3}$ and $\eta$ play a vital role in the design procedure. $\rho_{2}$ can be regarded as a measure of the maximal difference of operator $N_{y}$ and operator $N_{0}$ at $z_{0}, \rho_{3}$ is a measure of the severity of the nonlinearity and the uncertainty of the system, and $\eta$ is a measure of the "trackability" of the system. The function $f_{0}$ should be assigned so that the values of $\rho_{2}$ and $\rho_{3}$ will allow a larger upper bound for the linear operator norm $\left\|W_{0} \psi Q_{0}^{-1}\right\|$.
(iii) A Quantitiative pole-placement (QPP) is defined by (7). That is, a proper selection of eigenvalues of the matrix $R$ will potentially enable one to satisfy the operator norm condition. To achieve an optimum design the eigenvalues must be placed so that the operator norm is as close as possible to the threshold value,

$$
\frac{\beta_{0}}{\rho_{0} \beta_{i}+\rho_{1} \beta_{w}+\rho_{2}+\rho_{3} \beta_{0}}
$$

(iv) The nominal plant defined in Eq. (5) is an essential part of the design criteria. That is, the nominal input $r_{0}$ must be determined so that ( $r_{0}, y_{0}$ ) satisfies the nominal equations.

## 3. GENERALIZED LQ PROBLEM

We first recall the LQ results for the regulator problem to motivate the generalized LQ problem for the QPP described in the previous section.

For a plant given by the state equations

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t)  \tag{8a}\\
& y(t)=C x(t) \tag{8b}
\end{align*}
$$

where $(A, B)$ is controllable, the optimal controller which minimizes the quadratic performance index (PI)

$$
\begin{equation*}
J=\int_{0}^{\infty}\left[x^{T} S x+u^{T} W u\right] d t \tag{9}
\end{equation*}
$$

where $S$ and $W$ are symmetric positive weighting matrices and $u$ is given by

$$
\begin{equation*}
u=-K x \tag{10}
\end{equation*}
$$

where the controller gains are computed as

$$
\begin{equation*}
K=W^{-1} B^{T} K_{1} \tag{11}
\end{equation*}
$$

with $K_{1}=K_{1}^{\tau}>0$ as the unique solution of the algebraic Riccati equation

$$
\begin{equation*}
0=-K_{1} A-A^{T} K_{1}-S+K B W^{-1} B^{T} K_{1} \tag{12}
\end{equation*}
$$

It is important ot note here that once $S$ and $W$ in the PI (9) are specified, $K_{1}$ can be determined by Eq. (12). Then $K_{1}$ in turn determines the state feedback gains of the control law (10) which corresponds to a definite closed loop poleconfiguration for the system given by (8). The ability to generate this somewhat definitive pole-configuration is the spirit in which we develop the generalized LQ problem for the QPP.

First we observe that the operator norm $\eta=\left\|W_{0} \Psi Q_{0}^{-1}\right\|$ crucial to the QPP depends only on the linear structure of the uncertain nonlinear plant (1). The linear part of the plant is given by Eq. (8).

Recalling the fact that for $f(t) \in L_{p}[1, \infty)$

$$
\|f\|_{p}=\left[\int_{0}^{\infty}|f(t)|^{p} d t\right]^{1 / p} \text { for } p \in[1, \infty)
$$

and that

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}=t \in[0, \infty)|f(t)|
$$

we modify the LQ performance measure (8) as

$$
\begin{align*}
J_{p}= & \int_{0}^{\infty}\left[\frac{1}{2 p}\left\{\left(y(t)-y_{0}(t)\right)^{T} Q_{1}\left(y(t)-y_{0}(t)\right)\right\}^{p}\right. \\
& \left.\frac{1}{2 p}\left\{u(t)^{T} Q_{2} u(t)\right\}^{p}\right] d t \tag{13}
\end{align*}
$$

to reflect an analogous $L_{\infty}$-measure in the limit as $p \rightarrow \infty$. In the PI given by (13), $y_{0}(t) \in R^{b}$ is the nominal output and $Q_{1}$, $Q_{2}$ are repectively, symmetric positive definite weighting matrices of order $b \times b$ and $m \times m$.

Next, by standard variational arguments we obtain the following conditions for the optimal contorl $\bar{u}(t)$ that steers the system output in such a way as to track the nominal output $y_{0}(t)$ simultaneously minimizing the PI (13) (Kwakernaak et al., 1972).

$$
\begin{align*}
& \text { (i) } \dot{\tilde{x}}(t)=A \tilde{x}(t)+B \tilde{u}(t) \text { (state equation) }  \tag{14}\\
& \text { (ii) } \dot{\tilde{v}}=\left\{\left(C \bar{x}-y_{0}\right)^{T} Q_{1}\left(C \tilde{x}-y_{0}\right)\right\}^{p-1} C^{T} Q_{1}\left(C \bar{x}-y_{0}\right) \\
& -A^{T} v \text { (costate equation) }  \tag{15}\\
& \text { (iii) }\left\{\tilde{u}^{T} Q_{2} \tilde{u}\right\}^{p-1} Q_{2} \tilde{u}+B^{T} \tilde{v}=0  \tag{16}\\
& \text { (iv) } \tilde{v}\left(T_{f}\right)=0  \tag{17a}\\
& H\left(\tilde{x}\left(T_{f}\right), \dot{\tilde{x}}\left(T_{f}\right), \tilde{u}\left(T_{f}\right), \tilde{v}\left(T_{f}\right), T_{f}\right)=0 \tag{17b}
\end{align*}
$$

where the Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2 p}\left\{\left(C x-y_{0}\right)^{T} Q_{1}\left(C x-y_{0}\right)\right\}^{p} \\
& +\frac{1}{2 p}\left\{u^{T} Q_{2} u\right\}^{p}+v^{T}(A x+B u) .
\end{aligned}
$$

andrepresents the optimality and $T_{f}$ is the final time.
Equations(14) ~ (17) constitute a set of necessary conditions for an extremal of the generalized $L Q$ performance index. If $p=1$ we recover the $L Q$ results in the form of a state feedback with gains given by the Riccatti differential equation. In order to obtain a perturbed form of this $L Q$ solution or equivalently the LQ pole-patterns for the generalized LQ problem (13) we start by defining the positive quantities

$$
\begin{align*}
& \lim _{p-\infty}\left\{\left(C \tilde{x}-y_{0}\right)^{T} Q_{1}\left(C \tilde{x}-y_{0}\right)\right\}^{p-1}=\epsilon_{1}(t)  \tag{18}\\
& \lim _{p \rightarrow \infty}\left\{\tilde{u}^{T} Q_{2} \tilde{u}\right\}^{p-1}=\epsilon_{2}(t) \tag{19}
\end{align*}
$$

which are then substituted in (15) and (16). The costate Eq. (15) then become

$$
\begin{equation*}
\dot{\tilde{v}}=-\epsilon_{1}(t) C^{T} Q_{1}\left(C \bar{x}-y_{o}\right)-A^{T} \tilde{v} \tag{20}
\end{equation*}
$$

and the control $\vec{u}(t)$ from(16) is

$$
\begin{equation*}
\tilde{u}(t)=-\frac{1}{\epsilon_{2}(t)} Q_{2}^{-1} B^{T} \tilde{v} \tag{21}
\end{equation*}
$$

Substituting (21) into (14) and augmenting it with (20) yield,

$$
\begin{align*}
& \dot{\bar{x}}(t)=A \tilde{x}-\frac{1}{\epsilon_{2}(t)} B Q_{2}^{-1} B^{T} v  \tag{22a}\\
& \dot{\bar{v}}(t)=-\epsilon_{1}(t) C^{T} Q_{1} C \bar{x}-A^{T} \tilde{v}+\epsilon_{1}(t) C^{T} Q_{1} y_{0} \tag{22b}
\end{align*}
$$

Rewriting Eq. (22) in a matrix form, given

$$
\begin{equation*}
\dot{\bar{z}}=\bar{A} \bar{z}+\tilde{B} \bar{u}_{c} \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{z}=\left[\begin{array}{l}
\tilde{x} \\
\tilde{v}
\end{array}\right] \in R^{2 n} \\
& \tilde{A}=\left[\begin{array}{cc}
A & -\frac{1}{\epsilon_{2}} B Q_{2}^{-1} B^{T} \\
-\epsilon_{1} C^{T} Q_{1} C & -A^{T}
\end{array}\right] \in R^{2 n \times 2 n} \\
& \tilde{B}=\left[\begin{array}{l}
0 \\
I
\end{array}\right] \in R^{2 n} \\
& \tilde{u}_{C}=\epsilon_{1} C^{T} Q_{1} y_{0} \in R^{m}
\end{aligned}
$$

Remarks: Equations(22) can be rewritten as

$$
\begin{align*}
& \dot{x}=A \tilde{x}-\frac{1}{\epsilon_{2}} B Q_{2}^{-1} B^{T} \tilde{v}  \tag{24a}\\
& \frac{1}{\epsilon_{1}} \dot{\tilde{v}}=-C^{T} Q_{1} C \tilde{x}-\frac{1}{\epsilon_{1}} A^{T} \tilde{v}+C^{T} Q_{1} y_{0} \tag{24~b}
\end{align*}
$$

and we observe that for $\epsilon_{1}$ very large (or $\epsilon_{1} \rightarrow \infty$ ) by setting $\frac{1}{\epsilon_{\mathrm{l}}}=0$ formally in (24b) that

$$
C^{T} Q_{1}\left(C \tilde{x}-y_{o}\right)=0
$$

This implies that $C \tilde{x} \rightarrow y_{0}$ which in a sense captures the continuous tracking requirement. This somewhat heuristic argument is the motivation for the limiting computations given below. To facilitate these computations we arbitrarily set $\frac{1}{\epsilon_{2}} Q_{2}^{-1}=1$ for the SISO case.

Now we derive the characteristic polynomial of $\bar{A}$ as a function of $\epsilon_{1}$ and $\epsilon_{2}$, observing that the optimal closed loop poles which are the eigenvalues of the matrix $\tilde{A}$ should lie in the open left half complex plane. Moreover we set $\frac{1}{\epsilon_{2}} Q_{2}^{-1}=$ 1 for the SISO case as per the remarks made earlier.

It can be easily shown that

$$
\begin{align*}
\operatorname{det}(s I-\tilde{A}) & =\operatorname{det}\left[\begin{array}{cc}
s I-A & B B^{T} \\
\epsilon_{1} C^{T} Q_{1} C & s I+A^{T}
\end{array}\right]  \tag{25}\\
& =(-1)^{n} a(s) a(-s) \operatorname{det}\left(I+\epsilon_{1} h(-s)^{r} Q_{1} h(s)\right) \tag{26}
\end{align*}
$$

where

$$
\begin{aligned}
& a(s)=\operatorname{det}(s I-A) \\
& h(s)=C(s I-A)^{-1} B
\end{aligned}
$$

and $I$ 's are the identity matrices of appropriate dimensions. Thus the eigenvalues of the closed loop system are the zeros of (26) which are in the open left half complex plane. Now we let the open loop transfer function $h(s)$ of a SISO system be represented by

$$
\begin{align*}
h(s) & =\frac{b(s)}{a(s)} \\
& =\frac{b_{0} \prod_{i=1}^{n}\left(s-\varphi_{i}\right)}{\prod_{i=1}^{n}\left(s-\lambda_{i}\right)} \tag{27}
\end{align*}
$$

where $b_{0}$ is a nonzero constant, $\varphi_{i}, i=1 \cdots \cdots r$, are the zeros of the open loop system and $\lambda_{i}, \quad i=1 \cdots \cdots n$, are the poles of the open loop system, then with $Q_{1}=1$ for simplicity, (26) becomes

$$
\begin{align*}
& \underset{i=1}{n}\left(s-\lambda_{i}\right)\left(s+\lambda_{i}\right)+(-1)^{n-r} \epsilon_{1} b_{0}^{2} \\
& {\underset{i=1}{r}\left(s-\varphi_{i}\right)\left(s+\varphi_{i}\right)=0}^{\pi_{i}} \tag{28}
\end{align*}
$$

The asymptotic behavior of these closed loop poles as $\epsilon_{1} \rightarrow \infty$ is given in the following theorem(Kwarkernaak et al., 1972).

Theorem 2 : Suppose that the open loop system is represented by the transfer function (27), then for $\epsilon_{1} \rightarrow \infty, r$ eigenvalues of the closed loop system approach asymtotically the values $\tilde{\varphi}_{i}, i=1, \cdots r$, where

$$
\tilde{\varphi}_{i}=\left[\begin{array}{ll}
\varphi_{i} & \text { if } \operatorname{Re}\left(\varphi_{i}\right) \leq 0 \\
-\varphi_{i} & \text { if } \operatorname{Re}\left(\varphi_{i}\right)>0
\end{array}\right.
$$

and the remaining $(n-r)$ eigenvalues approach the asymptotes through the origin and make angles $\theta$ with the negative real axis of
(a) $\theta= \pm \frac{\ell \pi}{n-r}, \quad \ell=0 \cdots, \frac{n-r-1}{2}$, for $(n-r)$ odd
(b) $\theta= \pm \frac{\left(\ell+\frac{1}{2}\right) \pi}{n-r}, \quad \ell=0 \cdots, \frac{n-r-2}{2}$, for $(n-r)$ even.

The distance from the origin for the far away eigenvalues are asymptotically $\left(\epsilon_{1} b_{0}^{2}\right)^{1 /(2(n-r)}$.

Figures 1 (a) and 1 (b) show two Butterworth pole configurations corresponding to $(n-r)=2$, and 3 respectively.

In order to illustrate that the Butterworth pole configuration given in the above theorem leads to an almost minimum norm for the linear operator characterizing the closed loop system in QPP we give two examples.

Example : Consider the second order system

$$
\left[\begin{array}{l}
\dot{x}_{1}  \tag{29}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0.23 & 0 . \\
-0.57 & 1.42
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

The set of eigenvalues for the closed loop system are


Fig. 1. Optimal pole configuration


Fig. 2(a) Eigenvalue placement for $n-2$


Fig. 2(b) Norm configuration for $n-2$
chosen so that the distance from the origin $\rho$, and the angle $\theta$ measured from the negative real axis shown in Fig. 2(a) are

$$
\begin{array}{c:cccccccc}
\rho: & 0.5 & 1.0 & 1.5 & 2.0 & 3.0 & 5.0 & 10.0 & 20.0 \\
\theta: 10 . & 20 . & 30 . & 40 . & 50 . & 50 . & 70 . & 80 .
\end{array}
$$

we then compute the closed loop operator norm $\|\Psi\|$ corresponding to each pole configuration specified by $\rho$ and $\theta$. The results shown in Fig. 2(b) verify that the minimum norm is obatined when the set of eigenvalues for the closed loop system are chosen in the vicinity of a $45^{\circ}$ line. This is quite consistent with the predictions of the theorem given previous1 y .

In the following section we apply these results from Theorems 1 and 2 to a robotic manipulator problem merely for the purpose of illustrating our design methodology.

## 4. 3 DOF MANIPULATOR

We consider the three DOF manipulator shown in Fig. 3. This manipulator has a rotational joint and a translational joint in the ( $x, y$ ) plane. Moreover the arm can be lifted along the vertical $z$-axis thus defining the third degree of freedom.

The dynamic equations for this robot configuration follow directly from an application of Lagrange's equations and take the following form (Freund 1982)

$$
\begin{equation*}
M(\Psi(t), \gamma) \ddot{\Psi}(t)=-f(\Psi(t), \dot{\Psi}(t), \gamma)+u(t) \tag{30}
\end{equation*}
$$

where $\Psi(t)=[r(t), \theta(t), z(t)]^{T}$ specifies the configuration at time $t$ in a cylindrical frame of reference, $\gamma$ is the payload uncertainty and the dot denotes time derivatives. $u(t)$ represents the generalized forces and is given by

$$
u(t)=\left[F_{r}, T_{\theta}, F_{z}\right]^{r}
$$

where $F_{r}$ is the radial force, $T_{\theta}$ is the torque and $F_{z}$ is the vertical force associated with the coordinates $r, \theta$, and $z$ respectively. $M(\Psi(t), \gamma)$ and $f(\Psi(t), \dot{\Psi}(t), \gamma)$ are given belows.

$$
M(\Psi(t), \gamma)=\left[\begin{array}{cc}
\left(M_{1}+M_{2}\right) & 0 \\
0 & \left(M_{1}+M_{2}\right) r^{2}(t)-M_{1} \operatorname{lr}(t)+J \\
0 & 0
\end{array}\right.
$$



Fig. 3 A three DOF robot manipulator

$$
\left.\left.\begin{array}{c}
0 \\
0  \tag{31b}\\
\left(M_{1}+M_{2}\right)
\end{array}\right] \quad\left[\begin{array}{c}
-M_{12} r(t) \dot{\theta}^{2}(t)+\frac{1}{2} M_{1} \ell \theta^{2}(t) \\
\left\{2 M_{12} r(t) \dot{r}(t)-M_{1} \ell \dot{r}(t)\right\} \dot{\theta}(t)
\end{array}\right], \dot{\varphi}(t), \gamma\right)=\left[\begin{array}{c}
0
\end{array}\right.
$$

where, $M_{1}$ and $M_{2}$ are the arm mass and the payload mass, respectively, $M_{12}=M_{1}+M_{2}, \quad \ell$ is the length of the arm $A B$. $J$ the net moment of inertia of the arm and the swivel joint is given by

$$
J=J_{M 1}+J_{M 3}=\frac{1}{2} M_{3} r_{2}^{2}+\frac{1}{3} M_{1} l^{2}
$$

where, $J_{M 1}$ and $J_{M 3}$ are the moments of inertia of the swivel and the arm respectively, about the $z$-axis. $M_{3}$ and $r_{z}$ are the mass and the radius of the swivel.

Equation (31) depict a highly coupled nonlinear set of equations. By employing the state dependent transformation

$$
\begin{equation*}
u(t)=M(\varphi(t), \gamma) u_{t}(t) \tag{32}
\end{equation*}
$$

on the input $u(t)$, the equations of motion (30) are transformed into

$$
\begin{equation*}
\ddot{\varphi}(t)=-M(\varphi(t), \gamma) f(\varphi,(t), \dot{\varphi}(t), \gamma)+u_{t}(t) \tag{33}
\end{equation*}
$$

The inertia matrix $M(\varphi(t), \gamma)$ is clearly invertible for all $t \in$ $[0, \infty)$ which follows from the positive definitness of the mass matrix of a manipulator.

Now Eq. (33) can be rewritten in the usual state space form yielding.

$$
\begin{align*}
& \dot{x}(t)=\left[\begin{array}{cc}
0 & I_{3} \\
0 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
I_{3}
\end{array}\right] u_{t}(t)+\left[\begin{array}{c}
0 \\
f_{N}(x(t), \gamma)
\end{array}\right] \\
& y(t)=\left[\begin{array}{ll}
I_{3} & 0
\end{array}\right] x(t) \tag{34}
\end{align*}
$$

where, $I_{3}$ and 0 are $3 \times 3$ identity and null matrices respectively,

$$
\begin{aligned}
& x(t)=\left[\begin{array}{c}
\varphi(t) \\
\dot{\varphi}(t)
\end{array}\right] \in R^{6}, \\
& u_{t}(t)=M^{-1}(\varphi(t), \gamma) u(t) \in R^{3}
\end{aligned}
$$

and nonlinear term

$$
f_{N}=-M^{-1}(\varphi(t), \gamma) f(\varphi(t), \dot{\varphi}(t), \gamma)
$$

Equation (34) are decoupled with respect to the linear parts and is made use of in executing the design procedure obtained previously in section II. This form clearly allows the arbitrary placement of eigenvalues of each decoupled subsystem.

## Design Objective :

Our basic design objective is to synthesize a control $u(t)$ in order to achieve the tracking performance specified by the output constraints

$$
\left\|y_{i}-y_{o i}\right\| \leq \beta_{o i}, \quad \beta_{o i}>0, i=1,2,3
$$

despite the payload uncertainty. $y_{o i}, i=1,2,3$ are the 3 nominal outputs to be tracked and $y_{i}$ are the three actual outputs.

Input Sheres : Let the input spheres be given by

$$
\beta_{i}=1.0, \quad i=1,2,3
$$

Nominal Output:
The nominal outputs to be tracked are

$$
y_{01}=0.8-0.8 e^{-3 t}(\cos (t)+3 \sin (t))
$$

for the radial displacement of the arm,

$$
y_{02}=t^{2} e^{-t} \quad \text { for the angular rotation of the arm, }
$$

$$
y_{03}=0.5-0.5 \cos (t) \text { for the vertical motion of the arm. }
$$

Output Spheres:
Output sphere specifications are

$$
\beta_{o 1}=\beta_{o 2}=\beta_{o 3}=0.1
$$

Thus the tracking specifications call for precise tracking of the nominal outputs given above upto an accuracy of 0.1 m in $y_{1}, 0.1 \mathrm{rad}$ in $y_{2}$ and 0.1 m in $y_{3}$

## Bounded Uncertainty :

We consider the payload $M_{2}$ to be the primary uncertainty and assume that

$$
M_{2} \epsilon \Gamma=[0,20] \mathrm{kg}
$$

In order to deign a controller as outlined in the previous section, a threshold value as specified in Eq. (7) needs to be computed first. This requires the computation of several norm quantities as described in the theorem. We use the following data for all computations. $M_{1}=40 \mathrm{~kg}, M_{2}=[0,20]$ $\mathrm{kg}, \quad M_{3}=100 \mathrm{~kg}, \ell=1 \mathrm{~m}, r(t)=[0.0,1.0] \mathrm{m}, z(t)=[0.0$, 1.0] $m, \theta(t)=[0, \pi] \mathrm{rad}$, and $r_{2}=0.1 \mathrm{~m}$.

$$
\begin{aligned}
& \text { Let the design matrices } V_{1}=0_{3} \text { and } V_{2}=I_{3} \text {, then } \\
& B_{o}=\left[\begin{array}{llll}
0_{3} & I_{3} & 0_{3} & I_{3}
\end{array}\right]^{T}
\end{aligned}
$$

The weighting matrices $W_{0}$ and $Q_{0}$ chosen primarily to yield favorable norm values are

$$
W_{0}=Q_{0}=\left[\begin{array}{ll}
\Sigma & 0_{6} \\
0_{6} & \Sigma
\end{array}\right]
$$

where $\Sigma=\left[\begin{array}{cc}I_{3} & 0_{3} \\ 0_{3} & \frac{1}{\left|\lambda_{i}\right|_{\text {max }}} I_{3}\end{array}\right]$ and $\left|\lambda_{i}\right|_{\max }$ is the maximum absolute value of the eigenvalues of matrix $R . I_{3}$ is the $3 \times 3$ Identity matrix, $0_{3}$ and $0_{6}$ respectively are $3 \times 3$ and $6 \times 6$ mull matrices.

The selection of the weighting matrices is relatively arbitrary. For example they may be set to the identity matrix. This however will not yield favorable norm values.

Then,

$$
\begin{aligned}
\rho_{0} & =\left\|Q_{0} B_{0}\right\| \\
& =\left\|\left[\begin{array}{llll}
\sum_{0_{6}} & 0_{6}
\end{array}\right]\left[\begin{array}{llll}
0_{3} & I_{3} & 0_{3} & I_{3}
\end{array}\right]^{\|}\right\| \\
& =\frac{1}{\left|\lambda_{i}\right|_{\max }}, \quad i=1, \cdots, 12
\end{aligned}
$$

and $\rho_{1}=\left\|Q_{0} B_{1}\right\|=0, \quad$ since $B_{1}=0$ due to no external disturbance.

To calculate $\rho_{2}=\sup _{\gamma \in \Gamma^{\prime}\left\|Q_{0}\left(N_{\gamma} z_{0}-N_{0} z_{0}\right)\right\| \text {, we need to select }}$ a nominal nonlinear function $g(x)$ to cancel as much as possible the uncertain effects of $f_{N}$. we choose $g(x)$ to be of the same form as $f_{N}(x, \gamma)$ with $\gamma$ replaced by $\gamma_{0}$, where $\gamma_{0}$ are the arithmetic means of the uncertain parameters. In this case $\gamma=M_{2}=[0,20] \mathrm{kg}$ thus yielding

$$
\gamma_{0}=\bar{M}_{2}=\frac{1}{2}\left(M_{2}+\tilde{M}_{2}\right)=10 \mathrm{~kg}
$$

where $\bar{M}_{2}, M_{2}$ and $\check{M}_{2}$ respectively are the mean value, lower bound and the upper bound of $M_{2}$.

Thus, $g(x)=\left[\begin{array}{c}g_{1}(x) \\ g_{2}(x) \\ 0\end{array}\right]$
where $g_{1}(x)=\left(x_{1}-\frac{M_{1}^{l}}{2\left(M_{1}+M_{2}\right)}\right) x_{5}^{2}$

$$
g_{2}(x)=\frac{-2\left(M_{1}+\bar{M}_{2}\right) x_{1}-M_{1}^{l}}{J-M_{1} \ell x_{1}+\left(M_{1}+\bar{M}_{2}\right) x_{1}^{2}} x_{4} x_{5} .
$$

Thus,

$$
\begin{aligned}
\rho_{2} & =\sup \left\|Q_{0}\left(N_{r} z_{0}-N_{0} z_{0}\right)\right\| \\
& =\sup \left\|\left[\begin{array}{cc}
I_{3} & 0_{3} \\
0_{3} & \frac{1}{\left|\lambda_{i}\right|_{\max }} I_{3}
\end{array}\right]\left[\begin{array}{c}
0_{3} \\
f_{N}-f_{0}(x)
\end{array}\right]\right\| \\
& =\max \left\{\left|\left(\frac{-M_{1} l}{2 M_{12}}+\frac{M_{1} l}{2\left(M_{1}+M_{2}\right)}\right) \cdot x_{5}^{2}\right| \cdot \frac{1}{\left|\lambda_{i}\right|_{\max }}\right. \\
& \left|\left(\frac{-2 M_{12} x_{1}-M_{1} l}{J-M_{1} \ell x_{1}+M_{12} x_{1}^{2}}+\frac{2\left(M_{1}+\bar{M}_{2}\right) x_{1}+M_{2} l}{J-M_{1} \mid x_{1}+\left(M_{1}+\overline{M_{2}}\right) x_{1}^{2}}\right) x_{4} x_{5}\right| \\
& \left.\left\lvert\, \frac{1}{\left|\lambda_{i}\right|_{\max }}\right.\right\}
\end{aligned}
$$

On substitution of numerical values, it follows that

$$
\rho_{2}=\frac{6}{\left|\lambda_{i}\right|_{\max }}
$$

Computation of $\rho_{3}$ involves the calculation of gradients of the nonlinearity with respect to he state vector $x$, and is given by

$$
\rho_{3}=\max \left\{G_{1}, G_{2}\right\}
$$

where,

$$
\begin{aligned}
& G_{1}=\max \left\|\nabla_{x} f_{N 1}^{T}\right\| \\
&=\max \left\{\frac{1}{T \lambda_{i} \mid \max }\left|x_{5}\right|,\left|2\left(x_{1}-\frac{M_{1} l}{2 M_{12}}\right)\right| \cdot\left|x_{5}\right|\right\} \\
&=1.34 \\
& G_{2}=\max \left\|\nabla_{x} f_{N 2}^{T}\right\| \\
&=\max \{\{ \\
& \left.\frac{-2\left(J-M_{1} l x_{1}+M_{12} x_{1}^{2}\right) M_{12}+\left(2 M_{12} x_{1}+M_{1} l\right)\left(-M_{1} l+2 M_{12}\right) x_{1} \mid}{\left(J-M_{1}\left(x_{1}+M_{12}\right) x_{1}^{2}\right)^{2}} \right\rvert\,:
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{1}{\left|\lambda_{i}\right| \max }\left|x_{4} x_{5}\right|,\left|\frac{-2 M_{12} x_{1}-M_{1} l}{J-M_{1} l x_{1}+M_{12} x_{1}^{2}}\right| \cdot\left|x_{5}\right|, \\
& \left.\left|\frac{-2 M_{12} x_{1}-M_{1} l}{J-M_{1} l x_{1}+M_{12} x_{1}^{2}}\right| \cdot\left|x_{4}\right|\right\} \\
& = \\
& =21.0
\end{aligned}
$$

Hence, we obtaine $\rho_{3}=21.0$
In computing $\rho_{\text {? }}$ and $\rho_{3}$ as avove it is implicitly assumed
that $\frac{1}{\mid \lambda_{i}!\max }<1$. At the end of the design this condition needs to be verified. It will clearly be statisfied in this case.

Now assembling all of the above computations we compute threshold given in Eq. (7)

$$
\begin{align*}
& \frac{\beta_{0}}{\rho_{0} \beta_{i}+\rho_{1} \beta_{w}+\rho_{2}+\rho_{3} \beta_{0}} \\
& =\frac{0.1}{1 /\left|\lambda_{i}\right|_{\max }+6.0 /\left|\lambda_{i}\right|_{\max }+(21.0)(0.1)} \tag{35}
\end{align*}
$$

Now it only remains to fine a set of eigenvalues for the system matrix

$$
R=\left[\begin{array}{cc}
A & B K \\
-G C & A+B K+G C
\end{array}\right]
$$

so that the norm $\left\|W_{0} \Psi Q_{0}^{-1}\right\|$ is less than the upper bound (35). Based on the numerical scheme previously outlined, we obtain the spectra

$$
\begin{aligned}
\sigma(A+B K) & =\{-47.0 \pm j 49.0, \quad-50.0 \pm j 53.0, \\
& -53.0 \pm j 51.0\} \\
\sigma(A+G C) & =\{-110.0 \pm j 111.0,-113.0 \pm j 114.0, \\
& -115.0 \pm j 113.0\}
\end{aligned}
$$

yielding

$$
K=\left[\begin{array}{rrrrrr}
-4160 & 0 & 0 & -94 & 0 & 0 \\
0 & -5309 & 0 & 0 & -100 & 0 \\
0 & 0 & -5410 & 0 & 0 & -106
\end{array}\right]
$$

and

$$
G=\left[\begin{array}{rrrrrr}
-220 & 0 & 0 & -24421 & 0 & 0 \\
0 & -226 & 0 & 0 & -25765 & 0 \\
0 & 0 & -230 & 0 & 0 & -25994
\end{array}\right]^{T}
$$

With the abvoe spectra, we obtain the upper bound

$$
\frac{\beta_{0}}{\rho_{0} \beta_{i}+\rho_{1} \beta_{w}+\rho_{2}+\rho_{3} \beta_{0}}=0.045
$$

and the critical norm of the operator

$$
\left\|W_{0} \Psi Q_{0}^{-1}\right\|=0.041
$$

which clearly satifies inequality (7).
With $K$ known we can now compute the nominal command input functions $r_{o i}(t), i=1,2,3$, as follows.

$$
\begin{aligned}
& r_{o 1}(t)=3688-e^{-3 t}(3680 \cos (t)+10336 \sin (t)) \\
& r_{o 2}(t)=e^{-t}\left(2+196 t+5210 t^{2}\right) \\
& r_{03}(t)=2705-2704.5 \cos (t)+53 \sin (t) .
\end{aligned}
$$

Thus it follows that the design specified by matrices $G, K$, the nonlinear function $g(x)$ and the nominal inputs $r_{o i}, i=1,2,3$, guarantee the required tracking performance according to the Theorem 1. The validity of the theorem is also confirmed by simulation results.

Figures (4) $\sim(7)$ show simulations for $M_{2}=20 \mathrm{~kg}$. Figure 4 shows the nominal output $y_{01}$ and the actual output $y_{1}$. There is hardly any difference in the two graphs. This clearly demonstrates the tracking accuracy. Figure 5(a), (b) and


Fig. $4 y_{1}(t)$ and $y_{O_{1}}(t)$


Fig. 5(a) Output deviation $\left(y_{1}(t)-y_{0}(t)\right)$


Fig. 5(b) Output deviation $\left(y_{2}(t)-y_{02}(t)\right)$


Tfinc (jec)
Fig. 5(c) Output deviation $\left(y_{3}(t)-y_{o 3}(t)\right)$


Fig. 6(a) Control effort $u_{1}(t)$


Fig. 6(b) Control effort $u_{2}(t)$


Fig. 6(c) Control effort $u_{3}(t)$


Fig. 7 Input disturbance $\left(r_{1}(t)-r_{01}(t)\right)$
(c) show the errors $e_{i}=y_{i}-y_{o i}, i=1,2,3$. These errors are of the order of $10^{-3}$ which is quite conservative in comparison with the imposed output sphere $\beta_{0}=0.1$. This conservativeness is not surprising due to the generality of the inputs and the nonlinearity admissible in $L_{\infty}[0, \infty)$. The required control inputs are shown in Fig. 6(a), (b), and Fig. 6 (c). Figures (8)
$\sim(10)$ show simulations for a sinusoidally varying uncertainty $M_{2}=10+10 \sin (10 t)$. Figure 8 shows the nominal output $y_{02}$ and the actual output $y_{2}$. Figure 9 shows the error $y_{2}-y_{02}$ and the control input $u_{2}$ is shown in Figure 10. The latter uncertainty is considered just for the sake of demonstrating that the methodology is valid for any uncertainty in


Fig. $8 \quad y_{2}(t)$ and $y_{o 2}(t)$


Fig. 9 The tracking error $\left(y_{2}(t)-y_{o 2}(t)\right)$


Fig. 10 Control effort $u_{2}(t)$
a given band.

## 5. CONCLUSION

In this paper we considered the quantitative pole placement problem central to the direct design of control systems assuring "tracking in the sense of spheres". An approach was proposed to eliminate the adhoc nature of selecting the closed loop poles. It is based on a generalized LQ (linear quadratic) problem formulation. We argue that closed loop pole-patterns that are very close to the Butterworth patterns yield reasonable operator norms for the successful execution of the design criteria stipulated in theorem 1. This is reasonable since in a proper LQ formulation exact Butterworth configurations would yield the optimal $L_{2}$-tracking when cheap control (i.e., the weighting on the control tends to zero) is employed.

The basic results were then applied to robotic manipulator for illustrative purposes only. Admittedly there are practical problems which we did not consider in this work. The simula-
tion results clearly demonstrate that the required tracking accuracy is met quite adequately. In fact the design is somewhat conservative. This however is to be expected since any uncertainty whatsoever within the specified bounds is admissible. In particular, any $L_{\infty}$-function within the given bounds is admissible.

Current research is aimed at obtaining less conservative design criteria by employing $L_{2}$-measures for specifying tracking bounds coupled with time varying weighting matrices. Another open problem is to develop a formal theorem to obtain the optimal pole-configuration yielding the minimum closed loop operator norm in an $L_{\infty}$-setting. The results given in here is a step in this direction.

## REFERENCES

Barnard, R.D., 1980. "Controller Design Criteria for Servo Tracking in Uncertain Systems," Proceedings of 23rd Midwest Symposium on Circuits and Systems, Toledo, OH.

Barnard, R.D. and Jayasuriya, S. 1982, "Controller Design for Uncertain Nonlinear Sytems," Proceedings of 1982 American Control Conference, Alington, VA.

Freund, E., 1982, "Fast Nonlinear Control with Arbitrary pole-placement for Industrial Robots and Manipulators," Int. J. of Robotics Research, Vol. 1, pp. $65 \sim 78$.

Horowitz, I.M., 1963, Synthesis of Feedback Systems, Academic Press, New York.

Horowitz, I.M., 1969, "Optimum Linear Adaptive Design of Dominant-Type Systems with Large Paramenter Variations," IEEE Trans. Automatic Control, AC-14, pp. 261~269.

Horowitz, I.M., 1976, "Synthesis of Feedback Systems with Nonlinear Time-Varying Uncertain Plants to Satisfy Quantitative Performance Specifications," IEEE Proceedings, Vol. 64, pp. 123~130.

Horowitz, I.M., 1982, "Quantitative Feedback Theory," IEE Proc., 129, D, pp. 215~226.

Jayasuriya, S. and Kee, C.D., 1988, "A Circle Type Criterion for the Synthesis of Robust Tracking Controllers," Submitted to International Journal of Control, Vol. 48, No. 3, pp. 865 $\sim 886$.

Jayasuriya, S., Rabins, M.J. and Barnard, R.D., 1984, "Guaranteed Tracking Behaviour in the Sense of Input-Output Spheres for Systems with Uncertain Parameters," J. of Dyn. Syst. Meas. Control. Vol. 106, pp. 273~279.

Kee, C.D., 1987, "A Quantitative Ploe-Placement Approach for Robust Tracking," Ph. D. Dissertation, Michigan State Univ., East Lansing, MI 48823.

Kwakernaak, H. and Sivan, R., 1972, Linear Optimal Control Systems, Wiley-Interscience, New York.

Leitmann, G., 1979, "Guaranteed Asymptotic Stability for some Linear Systems with Bounded Uncertainties," ASME J. of Dyn. Syst. Meas. Control, Vol. 101, pp. 212~216.

Leitmann, G., 1981, "On the Efficacy of Nonlinear Control in Uncertain Linear Systems," J. of Dyn. Syst. Meas. Control, 103, pp. 95~102.

Usoro, P.E., Schweppe, F.C., Wormley, D.N. and Gould, L. A., 1982, "Ellipsoidal Set-Theoretic Control Synthesis," Journal of Dynamic Systems, Measurement, and Control, Vol. 104, No. 4.

Zames, G., 1981, "Feedback and Optimal Sensitivity : Model Reference Trasformations, Multiplicative Seminorms, and Approximate Inverses,"IEEE Trans. Automatic Control, AC -26, pp. 301~320


[^0]:    *Department of Mechanical Design, Chonnam National Univer sity, Gwangju, 500-757, Korea
    **Department of Mechanical Engineering, Chonnam National University, Gwangju, 500-757, Korea

